Aldosterone regulation of intestinal Na absorption involves SGK-mediated changes in NHE3 and Na+ pump activity.
نویسندگان
چکیده
Aldosterone-induced intestinal Na(+) absorption is mediated by increased activities of apical membrane Na(+)/H(+) exchange (aNHE3) and basolateral membrane Na(+)-K(+)-ATPase (BLM-Na(+)-K(+)-ATPase) activities. Because the processes coordinating these events were not well understood, we investigated human intestinal Caco-2BBE cells where aldosterone increases within 2-4 h of aNHE3 and alpha-subunit of BLM-Na(+)-K(+)-ATPase, but not total abundance of these proteins. Although aldosterone activated Akt2 and serum glucorticoid kinase-1 (SGK-1), the latter through stimulation of phosphatidylinositol 3-kinase (PI3K), only the SGK-1 pathway mediated its effects on Na(+)-K(+)-ATPase. Ouabain inhibition of the early increase in aldosterone-induced Na(+)-K(+)-ATPase activation blocked most of the apical NHE3 insertion, possibly by inhibiting Na(+)-K(+)-ATPase-induced changes in intracellular sodium concentration ([Na](i)). Over the next 6-48 h, further increases in aNHE3 and BLM-Na(+)-K(+)-ATPase activity and total protein expression were observed to be largely mediated by aldosterone-activated SGK-1 pathway. Aldosterone-induced increases in NHE3 mRNA, for instance, could be inhibited by RNA silencing of SGK-1, but not Akt2. Additionally, aldosterone-induced increases in NHE3 promoter activity were blocked by silencing SGK-1 as well as pharmacological inhibition of PI3K. In conclusion, aldosterone-stimulated intestinal Na(+) absorption involves two phases. The first phase involves stimulation of PI3K, which increases SGK-dependent insertion and function of BLM-Na(+)-K(+)-ATPase and subsequent increased membrane insertion of aNHE3. The latter may be caused by Na(+)-K(+)-ATPase-induced changes in [Na] or transcellular Na flux. The second phase involves SGK-dependent increases in total NHE3 and Na(+)-K(+)-ATPase protein expression and activities. The coordination of apical and BLM transporters after aldosterone stimulation is therefore a complex process that requires multiple time- and interdependent cellular processes.
منابع مشابه
Aldosterone stimulates intestinal Na+ absorption in rats by increasing NHE3 expression of the proximal colon.
Na+ retention by the colon in response to salt deprivation is mediated in part by the resulting secondary hyperaldosteronism. We show that experimental hyperaldosteronism, to levels seen with salt deprivation, causes an increase in the selective expression and activity of NHE3, an apically located isoform of the Na+/H+exchange family that functions in transepithelial Na+ absorption. The effect ...
متن کاملRegulation of sgk by aldosterone and its effects on the epithelial Na(+) channel.
Aldosterone is the major corticosteroid regulating Na(+) absorption in tight epithelia and acts primarily by activating the epithelial Na(+) channel (ENaC) through unknown induced proteins. Recently, it has been reported that aldosterone induces the serum- and glucocorticoid-dependent kinase sgk and that coexpressing ENaC with this kinase in Xenopus laevis oocytes increases the amiloride-sensit...
متن کاملNongenomic regulation by aldosterone of the epithelial NHE3 Na(+)/H(+) exchanger.
The relevance of nongenomic pathways to regulation of epithelial function by aldosterone is poorly understood. Recently, we demonstrated that aldosterone inhibits transepithelial HCO(3)(-) absorption in the renal medullary thick ascending limb (MTAL) through a nongenomic pathway. Here, we examined the transport mechanism(s) responsible for this regulation, focusing on Na(+)/H(+) exchangers (NHE...
متن کاملEpithelial sodium channel regulated by aldosterone-induced protein sgk.
Sodium homeostasis in terrestrial and freshwater vertebrates is controlled by the corticosteroid hormones, principally aldosterone, which stimulate electrogenic Na+ absorption in tight epithelia. Although aldosterone is known to increase apical membrane Na+ permeability in target cells through changes in gene transcription, the mechanistic basis of this effect remains poorly understood. The pre...
متن کاملsgk: an essential convergence point for peptide and steroid hormone regulation of ENaC-mediated Na+ transport.
To study the role of sgk (serum, glucocorticoid-induced kinase) in hormonal regulation of Na+ transport mediated by the epithelial Na+ channel (ENaC), clonal cell lines stably expressing human sgk, an S422A sgk mutant, or a D222A sgk mutant were created in the background of the A6 model renal epithelial cell line. Expression of normal sgk results in a 3.5-fold enhancement of basal transport and...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- American journal of physiology. Gastrointestinal and liver physiology
دوره 295 5 شماره
صفحات -
تاریخ انتشار 2008